Qualitative Knowledge Discovery
نویسندگان
چکیده
Knowledge discovery and data mining deal with the task of finding useful information and especially rules in unstructured data. Most knowledge discovery approaches associate conditional probabilities to discovered rules in order to specify their strength. In this paper, we propose a qualitative approach to knowledge discovery. We do so by abstracting from actual probabilities to qualitative information and in particular, by developing a method for the computation of an ordinal conditional function from a possibly noisy probability distribution. The link between structural and numerical knowledge is established by a powerful algebraic theory of conditionals. By applying this theory, we develop an algorithm that computes sets of default rules from the qualitative abstraction of the input distribution. In particular, we show how sparse information can be dealt with appropriately in our framework. By making use of the duality between inductive reasoning and knowledge discovery within the algebraic theory of conditionals, we can ensure that the discovered rules can be considered as being most informative in a strict, formal sense. draft – 2008-07-20
منابع مشابه
Designing an Ontology for Knowledge Discovery in Iran’s Vaccine
Ontology is a requirement engineering product and the key to knowledge discovery. It includes the terminology to describe a set of facts, assumptions, and relations with which the detailed meanings of vocabularies among communities can be determined. This is a qualitative content analysis research. This study has made use of ontology for the first time to discover the knowledge of vaccine in Ir...
متن کاملKnowledge Discovery in Spatial Databases
Knowledge discovery in databases is a complex process concerned with the discovery of relationships and other descriptions from data. Knowledge discovery in spatial databases represents a particular case of discovery, allowing the discovery of relationships that exist between spatial and non-spatial data, and other data characteristics that aren’t explicitly stored in spatial databases. This pa...
متن کاملKnowledge Discovery with Qualitative Influences and Synergies
We review some approaches to qualitative uncertainty and propose a new one based on the idea of Absolute Order of Magnitude. We show that our ideas can be useful for Knowledge Discovery by introducing a derivation of the Naive-Bayes classifier based on them: the Qualitative Bayes Classifier. This classification method keeps Naive-Bayes accuracy while gaining interpretability, so we think it can...
متن کاملA Way to Improve Decision-Making
Knowledge discovery in databases is a process that aims at the discovery of associations within data sets. The analysis of geo-referenced data demands a particular approach in this process. This chapter presents a new approach to the process of knowledge discovery, in which qualitative geographic identifiers give the positional aspects of geographic data. Those identifiers are manipulated using...
متن کاملMining Geo-Referenced Databases: A Way to Improve Decision-Making
Knowledge discovery in databases is a process that aims at the discovery of associations within data sets. The analysis of geo-referenced data demands a particular approach in this process. This chapter presents a new approach to the process of knowledge discovery, in which qualitative geographic identifiers give the positional aspects of geographic data. Those identifiers are manipulated using...
متن کامل